Identification of two single base substitutions in the UGT1 gene locus which abolish bilirubin uridine diphosphate glucuronosyltransferase activity in vitro.

نویسندگان

  • L T Erps
  • J K Ritter
  • J H Hersh
  • D Blossom
  • N C Martin
  • I S Owens
چکیده

Accumulating evidence indicates that mutations in the human UGT1 gene locus abolish hepatic bilirubin UDP-glucuronosyltransferase activity and cause the subsequent accumulation of bilirubin to toxic levels in patients with Crigler-Najjar type 1 (CN-I). Genetic and biochemical criteria are required to link CN-I with mutations in UGT1. Here we present analysis of mutations at the UGT1 locus in three individuals that were clinically diagnosed with CN-I (two related and one unrelated). Each patient carries a single base substitution that alters conserved residues in the transferase enzyme molecule, serine to phenylalanine at codon 376 and glycine to glutamic acid at codon 309. Each was homozygous for the defect as demonstrated by sequencing and RFLPs. Mutant cDNAs, constructed by site-directed mutagenesis, inserted into expression vectors, and transfected into COS-1 cells, supported the synthesis of the bilirubin transferase protein but only cells transfected with the wild-type cDNA expressed bilirubin UDP-glucuronosyltransferase activity. The data provide conclusive evidence that alterations at Gly 309 and Ser 376 are the genetic basis for CN-I in these families. These results suggest that the two codons, located in conserved regions of the molecule, are part of the active site of the bilirubin enzyme.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of a genetic alteration in the code for bilirubin UDP-glucuronosyltransferase in the UGT1 gene complex of a Crigler-Najjar type I patient.

Patients with Crigler-Najjar syndrome (CN) type I inherit an autosomal recessive trait for hyperbilirubinemia, which is characterized by the total absence of bilirubin UDP-glucuronosyltransferase (transferase) activity. The recent identification of two bilirubin transferase isoforms with identical carboxyl termini (Ritter, J. K., J. M. Crawford, and I. S. Owens. 1991. J. Biol. Chem. 266:1043-10...

متن کامل

Developmental hyperbilirubinemia and CNS toxicity in mice humanized with the UDP glucuronosyltransferase 1 (UGT1) locus.

High levels of unconjugated bilirubin (UCB) in newborn children is associated with a reduction in hepatic UDP glucuronosyltransferase (UGT) 1A1 activity that can lead to CNS toxicity, brain damage, and even death. Little is known regarding those events that lead to UCB accumulation in brain tissue, and therefore, we sought to duplicate this condition in mice. The human UGT1 locus, encoding all ...

متن کامل

Glucuronidation of drugs in humanized UDP-glucuronosyltransferase 1 mice: Similarity with glucuronidation in human liver microsomes

Uridine 5'-diphosphate-glucuronosyltransferases (UGTs) are phase II drug-metabolizing enzymes that catalyze glucuronidation of various endogenous and exogenous substrates. Among 19 functional human UGTs, UGT1A family enzymes largely contribute to the metabolism of clinically used drugs. While the UGT1A locus is conserved in mammals such as humans, mice, and rats, species differences in drug glu...

متن کامل

A mutation which disrupts the hydrophobic core of the signal peptide of bilirubin UDP-glucuronosyltransferase, an endoplasmic reticulum membrane protein, causes Crigler-Najjar type II.

Crigler-Najjar (CN) disease is caused by a deficiency of the hepatic enzyme, bilirubin UDP-glucuronosyltransferase (B-UGT). We have found two CN type II patients, who were homozygous for a leucine to arginine transition at position 15 of B-UGT1. This mutation is expected to disrupt the hydrophobic core of the signal peptide of B-UGT1. Wild type and mutant B-UGT cDNAs were transfected in COS cel...

متن کامل

Hematologically important mutations: bilirubin UDP-glucuronosyltransferase gene mutations in Gilbert and Crigler-Najjar syndromes.

Gilbert and Crigler-Najjar syndromes are familial unconjugated hyperbilirubinemias caused by genetic lesions involving a single complex locus encoding for bilirubin UDP-glucuronosyltransferase (UGT1A1) gene. Over the last years a number of different mutations affecting this gene have been characterized. In this report is provided a summary of reported Gilbert and Crigler-Najjar syndromes associ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 93 2  شماره 

صفحات  -

تاریخ انتشار 1994